

المعهد الجامعي للتكنولو

Entrance Exam (Engineering) MathematicsExam

July 25, 2017

Time: 2hours

N.B.: Questions 1, 2, 3, and 4 are obligatory

Exercise 1 (10 Pts)

Consider the two functions f and g defined over]0; $+\infty$ [by:

$$f(x) = 2x + \frac{1 - \ln x}{x}$$
 and $g(x) = 2x^2 - 2 + \ln x$

Denote by (C) the representative curve of f in an orthonormal system $(0; \vec{i}, \vec{j})$.

A- 1) Show that *g* is strictly increasing over $]0; +\infty[$.

2) Calculate g(1) and deduce the sign of g(x) according to the values of x.

- **B-** 1) a- Determine $\lim_{x \to 0} f(x)$ and deduce an asymptote to (C).
 - b- Show that the line (d) with equation *y* = 2*x* is an asymptote to (C). Study, according to the values of x, the relative positions of (C) and (d).
- 2) Show that $f'(x) = \frac{g(x)}{x^2}$.
 - 3) Set up the table of variations of f.
 - 4) Draw (d) and (C) in the system $(0; \vec{i}, \vec{j})$.
 - 5) a- Show that f has over $[1;+\infty]$ an inverse function h whose domain of definition is to be determined.
 - b- Draw (Γ), the representative curve of h in the same system as that of (C).
 - c- Determine the abscissa of the point of (Γ) where the tangent is parallel to the line withequation $y = \frac{x}{2}$.

Exercise 2 (10 Pts)

The space is referred to a direct orthonormal system $(0; \vec{\iota}, \vec{j}, \vec{k})$. Consider the plane (P) with equation x - 2y + 2z - 6 = 0

and the line (d) with parametric equations
$$\begin{cases} x = m + 1 \\ y = 2m + 1 \\ z = 2m + 2 \end{cases}$$
 $(m \in IR)$

Let (Q) be the plane containing (d) and perpendicular to (P) and A (1; 1; 2) a point on (d).

1) Show that 2x-z = 0 is an equation of the plane (Q).

2) Prove that the line (
$$\Delta$$
)with parametric equations
$$\begin{cases} x = 2t \\ y = 5t - 3 \\ z = 4t \end{cases}$$
 $(t \in IR)$

is the line of intersection of (P) and (Q).

3) a-Determine the coordinates of B, the meeting point of (d) and (Δ).

b-Determine the coordinates of point F, the orthogonal projection of A on(Δ).

c-Calculate the cosine of the angle formed by (d) and (P).

Exercise 3 (10 Pts)

An urn contains even balls: four red balls and three green balls.

A player selects randomly and simultaneously three balls from this urn.

1) a- Calculate the probability that the player selects exactly two red balls.

b- Show that the probability that the player selects at least two red balls is equal to $\frac{22}{25}$.

- 2) After selecting three balls, the player scores:
 - 9 points if he gets three red balls;
 - 6 points if he gets exactly two red balls;
 - 4 points if he gets exactly one red ball;
 - Zero if he gets three green balls.

Denote by X be the random variable that is equal to the score of the player.

- a- Determine the probability distribution of X.
- b- Knowing that the player scored more than 2 points calculate the probability that his score is multiple of 3.

Exercise 4 (10 Pts)

In the complex plane referred to a direct orthonormal $(O;\vec{u},\vec{v})$, consider the points Mand M' with respective affixes z and z' such that: $z' = (1 + i\sqrt{3}) z - 2$.

- 1) In this part, suppose that z = 1+i.
 - a- Show that the point M' belongs to the line with equation y = -x.

b- Show that triangle OMM' is right at O.

- 2) Let I be the point with affix -2.
 - a- Verify that |z' + 2| = 2 |z|. Deduce that $\|\overrightarrow{IM'}\| = 2 \|\overrightarrow{OM}\|$.
 - b- Prove that as M describes the circle with center O and radius 2, M' describes a fixedcircle whose center and radius are to be determined.
- 3) Suppose that z = x+iy and z' = x'+iy' where x, y, x' and y' are real numbers.
 - a- Express x' and y' in terms of x and y.
 - b- Show that if M describes the line with equation $y = -x\sqrt{3}$, then M' describes a straight line to be determined.

N.B.: Choose 2 of the following 3 questions

Exercise 5 (5 Pts)

Calculate the following integrals:

a)
$$\int \cos^2(x) \, dx$$
 b) $\int \frac{1}{x^2 + 4x + 8} \, dx$

Exercise 6 (5 Pts)

Let the differential equation (E): $y'x - y = x^3$ over $]0; +\infty[$.

- 1) Solve the differential equation: y'x y = 0.
- 2) Verify that the function $f(x) = \frac{x^3}{2}$ is a particular solution of (E).
- 3) Deduce the general solution of (E).

Exercise 7 (5 Pts)

Find the equation of the parabola, $y = ax^2 + bx + c$, that passes through the following three points: (-2, 40), (1, 7), (3, 15).Note that the equations system must be resolved without calculator.

Good Work